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Abstract

The modeling of gate leakage has been of strong inter-
est in recent years, and with the accelerating pace of de-
vice miniaturization it is becoming more and important.
We outline a detailed survey of tunneling models describ-
ing carrier transport through insulating layers suitable for
semiconductor device simulation. The crucial topics are
separately discussed, comprising models for the energy
distribution function, the transmission coefficient for sin-
gle and layered dielectrics, defect-assisted tunneling and
its relation to dielectric degradation and breakdown, and
the influence of quasi-bound states in the inversion layer.
The models are compared to measurements and com-
monly used compact models.

1. Introduction

For the prediction of device performance in state-of-the-
art semiconductor devices the simulation of quantum-
mechanical tunneling effects is of increasing importance.
The application area of such models ranges from the pre-
diction of gate leakage in MOS transistors, the evaluation
of gate stacks for advanced high-κ gate insulator materi-
als, the optimization of programming and erasing times in
non-volatile semiconductor memory cells up to the study
of source-drain tunneling. However, tunneling model im-
plementations in state-of-the-art device simulators often
rely on simplified models assuming Fermi-Dirac statis-
tics and triangular energy barriers. In miniaturized de-
vices these assumptions are violated in several important
aspects. First, the electron energy distribution function
(EED) can in general not be described by a Fermi-Dirac
or Maxwellian distribution. Higher order moments are
necessary to more accurately characterize the distribution
of hot carriers [1]. The second weakness lies in the es-
timation of the transmission coefficient by the WKB or
Gundlach method. Energy barriers which are not of tri-
angular or trapezoidal shape are not treated correctly by
these models. To accurately describe tunneling in such
cases, Schrödinger’s equation must be solved. This is usu-
ally achieved using the transfer-matrix method [2]. This
method, however, is numerically stable only for layer
thicknesses up to a few nanometers. We therefore pro-
pose to use the quantum transmitting boundary method
instead [3].
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Figure 1. Tunneling processes in an MOS structure.

Finally, an inaccuracy arises when tunneling current from
the channel of inverted MOSFETs is calculated. In this
case, bound and quasi-bound states are formed, the latter
giving rise to quasi-bound state tunneling. The Tsu-Esaki
formula, which assumes a continuum of states, cannot be
used in this case.

An overview of the different tunneling mechanism is
given in Fig. 1. Considering simply the shape of the
energy barrier, Fowler-Nordheim (FN) tunneling and di-
rect tunneling can be separated. However, a more rig-
orous classification distinguishes between ECB (elec-
trons from the conduction band), EVB (electrons from
the valence band), HVB (holes from the valence band),
TAT (trap-assisted tunneling) processes, and QBS (quasi-
bound state) tunneling processes. We denote direct tun-
neling all processes which are not defect-assisted. In the
figure, the electron and hole energy distribution functions
are also indicated.

In Section 2, the theory of direct tunneling mechanisms
with emphasis on the modeling of the distribution function
and the transmission coefficient is outlined. Section 3 de-
scribes a set of models which can be used to model defect-
assisted tunneling based on inelastic phonon-assisted tran-
sitions and related effects such as dielectric degradation
and breakdown. Finally, Section 4 describes the calcu-
lation of tunneling in the presence of bound and quasi-
bound states as encountered in the inversion layer of a
MOSFET. A conclusion wraps up the main findings and
gives directions for future research.
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2. Direct Tunneling

The most prominent and almost exclusively used expres-
sion to describe direct tunneling transitions has been de-
veloped by Duke [4] and used by Tsu and Esaki to
describe tunneling through a one-dimensional superlat-
tice [2]. It is commonly known as Tsu-Esaki expression.
The current density reads

J =
4πmeffq

h3

Emax
∫

Emin

TC(Ex)N(Ex) dEx , (1)

with a transmission coefficient TC(Ex) and a supply func-
tion N(Ex) which is defined as

N(Ex) =

∞
∫

0

(f1(E) − f2(E)) dEρ . (2)

In these expressions the total energy E is the sum of a
transversal component parallel to the Si-SiO2 interface Eρ

and a transversal component Ex. The electron energy dis-
tribution functions in the gate and substrate are denoted by
f1 and f2, respectively. It is assumed that the transmission
coefficient only depends on the transversal energy com-
ponent and can therefore be treated independently of the
supply function. For a Fermi-Dirac distribution the supply
function evaluates to

N(Ex) = kBT ln









1 + exp

(

−Ex − EF,1

kBT

)

1 + exp

(

−Ex − EF,2

kBT

)









. (3)

where EF,1 and EF,2 denote the Fermi energies at the
semiconductor-oxide interfaces. Although this expression
is frequently used in the literature, it is not valid to de-
scribe hot-carrier tunneling.
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Figure 2. Comparison of the heated Maxwellian distribution
(full lines) with the results from a Monte Carlo simulation (dot-
ted lines) in a turned-on 180 nm MOSFET. Neighboring lines
differ by a factor of 10.

2.1 Distribution Function Modeling

Models for the EED of hot carriers in the channel region of
a MOSFET have been studied by numerous authors [5, 6].
The topic is of high importance because the assumption of
a cold Maxwellian distribution function

f(E) = A · exp

(

− E
kB · TL

)

, (4)

where TL denotes the lattice temperature and A a nor-
malization constant, underestimates the high-energy tail
of the EED near the drain region. The straightforward
approach is to use a heated Maxwellian distribution func-
tion where the lattice temperature TL is simply replaced
by the electron temperature Tn. However, the compari-
son with the results of Monte Carlo simulations in Fig. 2
which shows the contour lines of the heated Maxwellian
EED in comparison to Monte Carlo results for a MOSFET
with a gate length of Lg=180 nm at VDS= VGS= 1 V makes
clear that the heated Maxwellian distribution (full lines)
yields only poor agreement with the Monte Carlo results
(dashed lines). Particularly the high-energy tail near the
drain side of the channel is heavily overestimated by the
heated Maxwellian model.
A distribution function accounting for the cold carrier
population near the drain contact was proposed by Son-
oda et al. [6], and an improved model has been suggested
by Grasser et al. [1]:

f(E) = A

(

exp

(

−
( E
Eref

)b
)

+ c exp

(

− E
kBTL

)

)

.

(5)
The values of Eref , b, and c are derived from the solution
variables of a six moments transport model [1]. Fig. 3
shows the results of this model compared with the Monte
Carlo simulations, where an almost perfect agreement can
be seen.
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Figure 3. Comparison of the non-Maxwellian distribution (full
lines) with the results from a Monte Carlo simulation (dotted
lines) in a turned-on 180 nm MOSFET. Neighboring lines differ
by a factor of 10.
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2.2 Transmission Coefficient Modeling

Apart from the distribution function the quantum-
mechanical transmission coefficient is the second building
block of any tunneling model. It is based on the probabil-
ity flux

j =
~

2im
· (Ψ∗ · ∇Ψ −∇Ψ∗ · Ψ) (6)

where Ψ is the wave function, m the carrier mass, and
i =

√
−1. The transmission coefficient is the ratio of the

fluxes due to an incident and a reflected wave. These wave
functions can be found by solving the stationary one-
dimensional Schrödinger equation in the barrier region.
This can be achieved using different numerical methods,
such as the commonly applied Wentzel-Kramers-Brillouin
(WKB) approximation or Gundlach’s method [7]. A more
general approach is the transfer-matrix method [2] the ba-
sic principle of which is the approximation of an arbitrary-
shaped energy barrier by a series of barriers with con-
stant or linear potential. Since the wave function for such
barriers can easily be calculated, the transfer matrix can
be derived by a number of subsequent matrix computa-
tions. From the transfer matrix, the transmission coeffi-
cient can be calculated. However, the main shortcoming
of the method is that it becomes numerically instable for
thick barriers which is due to the multiplication of expo-
nentially growing and decaying states, leading to round-
ing errors which eventually exceed the amplitude of the
wave function itself [8]. An alternative method to com-
pute the transmission coefficient is based on the quantum
transmitting boundary method [9, 3]. The method uses a
finite-difference approximation of Schrödinger’s equation
with open boundary conditions. This results in a complex-
valued linear equation system for the unknown values of
the wave amplitudes.
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Figure 4. The transmission coefficient using different methods
for a dielectric consisting of a single layer. The shape of the
energy barrier and the wave function at 2.8 eV is shown in the
inset.

Fig. 4 shows the transmission coefficient for a triangular
energy barrier with the energy barrier and the values of
|Ψ|2 at E = 2.8 eV in the inset. The numerical instability
of the transfer-matrix method leads to an increasing trans-
mission coefficient for energies below 1 eV. The Gundlach
and analytical WKB methods deliver similar results for
the triangular barrier, however, the WKB method does not
resolve oscillations in the transmission coefficient. The
transmitting boundary method delivers the same results as
the Gundlach method which provides an accurate analyti-
cal solution in this case [10].

2.3 Comparison with Measurements

The Tsu-Esaki model with an analytical WKB transmis-
sion coefficient is in good agreement with measured data
for devices with different gate lengths and bulk doping as
shown in Fig. 5 for nMOS (top) and pMOS devices (bot-
tom) [11]. The simulations in this figure have been per-
formed using the device simulator MINIMOS-NT [12]. It
can be seen that the gate current density can be reproduced
over a wide range of dielectric thicknesses with a single
set of physical parameters. Note, however, that the as-
sumption of a constant electron mass in the dielectric may
no more be justified for ultrathin SiO2 layers but must be
replaced by an energy-dependent mass [13].
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Figure 6. Comparison of the gate current predicted by the Tsu-
Esaki model with measurements of an nMOS (top) and a pMOS
(bottom) transistor [11].
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2.4 Compact Models

For the use in practical device simulation it is desirable
to use compact models which do not require large com-
putational resources. The most commonly used model to
describe tunneling is the Fowler-Nordheim formula [14]:

J =
q3meff

8πmoxhqΦB

E2
ox exp

(

−4
√

2mox(qΦB)3

3~qEox

)

.

(7)
This expression is not valid for direct tunneling where the
barrier is of trapezoidal shape. Schuegraf and Hu derived
correction terms for this expression to make it applicable
to the regime of direct tunneling [15]

J =
q3meff

8πmoxhqΦBB1

E2
ox exp

(

−4
√

2mox(qΦB)3B2

3~qEox

)

,

(8)
For a triangular barrier the correction factors become
B1 = B2 = 1 and the expression simplifies to (7).
The compact tunneling models are compared in Fig. 7 for
an nMOS structure with 3 nm dielectric thickness. The
Schuegraf model fails to describe the tunneling current
density at low bias. For high bias, however, it may be used
to provide an estimation of the gate current. The Fowler-
Nordheim model totally fails for this low electric field.
Furthermore, the Fowler-Nordheim model shows the min-
imum gate current at minimum electric field in the dielec-
tric, and not for the minimum gate bias.

3. Defect-Assisted Tunneling

Shrinking of gate dielectric thicknesses demands the use
of alternative gate dielectrics such as ZrO2. These ma-
terials, however, suffer from high defect densities [16].
Therefore, gate dielectric reliability becomes a crucial is-
sue. Defect-assisted gate leakage is frequently described
by inelastic trap-assisted tunneling transitions [17].
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Figure 7. Comparison of different compact models with the Tsu-
Esaki model for an nMOS structure [18].

Fig. 8 shows the basic trap-assisted tunneling process
through the gate dielectric. Electrons are captured from
the cathode, relax to the energy of the trap E0 by phonon
emission with energy m~ω, and are emitted to the anode.
The trap-assisted tunneling current is found by integration
over the dielectric thickness

Jt = q

tdiel
∫

0

NT(x)

τc(x) + τe(x)
dx, (9)

where NT(x) is the trap concentration and τc(x) and
τe(x) denote the capture and emission times calculated
from

τ−1
c (z) =

∞
∫

E0

cn(E , x)Tl(E)fl(E) dE , (10)

τ−1
e (z) =

∞
∫

E0

en(E , x)Tr(E)(1 − fr(E)) dE . (11)

In these expressions, cn and en denote the capture and
emission rates, fl and fr the Fermi distributions, and Tl

and Tr the transmission coefficients from the left and right
side of the dielectric. The capture and emission processes
are described by their respective probabilities which
can be calculated by assuming constant [19] or energy-
dependent capture cross sections [20], and the transmis-
sion coefficients were evaluated by the WKB method.
While the neutral defects cause trap-assisted tunneling
and gate leakage, only the occupied traps lead to thresh-
old voltage degradation and wearout of the gate dielectric,
modeled by a space charge ρ(x) = QTNT(x)fT(x) in the
Poisson equation, where fT denotes the trap occupancy
and QT the trap charge state [21].
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Figure 8. Trap-assisted tunneling transition by inelastic phonon
emission. Electrons are captured from the cathode, relax to the
trap energy level E0 by the emission of phonons, and are emitted
to the anode.
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The neutral defects create percolation paths in the di-
electric, which eventually connect the gate with the sub-
strate [22]. In MINIMOS-NT the traps are placed ran-
domly, and the defect concentration NT is assumed to
be proportional to the total injected charge Qi via NT =
CQα

i as proposed by Degraeve et al. [23], who found val-
ues of C = 5.3×10−19 cm−1.88As−0.56 and α = 0.56 for
dielectric thicknesses between 7.3 and 13.8 nm. As soon
as a percolation path through the dielectric is created, the
dielectric layer loses its insulating behavior.
To predict the transient behavior of fast switching pro-
cesses, the charging and decharging dynamics of the traps
must be considered. The concentration of occupied traps
at position x and time t is generally described by

NT(x)
dfT(x, t)

dt
= NT(x)

1 − fT(x, t)

τc(x, t)
−NT(x)

fT(x, t)

τe(x, t)

where τc and τe describe the capture and emission time
of the trap. For the stationary case, the time derivative on
the left-hand side is zero and the expression (9) can be de-
rived, while for the transient case, the time constants must
be evaluated in each time step. The occupancy function
can be calculated iteratively by fT(ti) = Ai+BifT(ti−1)
where Ai and Bi depend on the capture and emission
times at the time step ti by [21]

Ai =
τ−1
c (ti)∆ti
1 + Ci

, Bi=
1 − Ci

1 + Ci
,

Ci = τ−1
m (ti)∆ti/2, τ−1

m = τ−1
c + τ−1

e , and ∆ti =
ti − ti−1. Once the time-dependent occupancy function
in the dielectric is known, the tunnel current through the
left or right interface at time ti is

Jl,r(ti) = q

tdiel
∫

0

NT(x)τ−1
l,r (x, ti) dx (12)

where the time constants τl and τr are calculated from

τ−1
l,r (ti) = τ−1

cl,r(ti) − fT(ti)
[

τ−1
cl,r(ti) + τ−1

el,r(ti)
]

with the respective values of the capture and emission
times to the left and right interface τcl,r and τel,r. Note
that the current through the two interfaces is, in general,
not equal. Only after the trap charging processes are fin-
ished, the capture and emission currents at the interfaces
are in equilibrium.

4. Quasi-Bound State Tunneling

Up to now it has been assumed that all energetic states
in the substrate contribute to the tunneling current. In the
channel of small MOSFETs, however, the high electric

field leads to a quantum-mechanical quantization of carri-
ers. If it is assumed that the wave function does not pen-
etrate into the gate, discrete energy levels can be identi-
fied. However, it cannot be assumed that electrons tunnel
from these energies, since for the derivation of the levels
it was assumed that there is no wave function penetration
into the dielectric. Taking a closer look at the conduction
band edge of a MOSFET in inversion reveals that, depend-
ing on the boundary conditions, different types of quan-
tized energy levels must be distinguished. Bound states
are formed at energies for which the wave function de-
cays to zero at both sides. Quasi-bound states (QBS) have
closed boundary conditions at one side and open boundary
conditions at the other side. Free states, finally, are states
which do not decay at any side. The Tsu-Esaki equation
(1) must therefore be replaced by a formula accounting for
quasi-bound state and continuum tunneling

J =
kBTq

π~2

∑

i,ν

gνm‖

τν(Eν,i)
ln

(

1 + exp

(EF − Eν,i

kBT

))

+
4πqmdos

h3

Emax
∫

Emin

TC(Ex, mox)N(Ex) dEx , (13)

where the symbols gν and m‖ denote the valley degen-
eracy and parallel masses (gν = 2 for m‖ = mt and
gν = 4 for m‖ =

√
mlmt), and τν(Eν,i) is the life time

of the quasi-bound state Eν,i. Fig. 9 shows the conduc-
tion band edge and the resulting wave functions for two
specific eigenvalues in the channel of a MOSFET. Sev-
eral methods have been reported for the calculation of the
life times [24, 25, 3]. However, these methods are com-
putationally demanding and therefore hardly suitable for
implementation in a device simulator. Conventional de-
vice simulation packages even neglect the QBS tunneling
component at all and use only the Tsu-Esaki formula (1)
instead.
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We propose to use the quasi-classical approach where the
life time is calculated from

τν(Eν,i) =

x
∫

0

√

2mν/(Eν,i − Ec(ξ))

TC(Eν,i)
dξ , (14)

with Ec(x) = Eν,i [26]. To further reduce the compu-
tation time, the QBS tunneling current can be calculated
based on the eigenvalues of the triangular well approxi-
mation Eν,i = −zi(~

2/2mν)1/3E2/3 with zi being the
zeros of the Airy function and E the electric field, instead
of calculating the eigenvalues from the complex eigen-
value problem. Since the closed-boundary eigenvalues are
higher than their open-boundary pendants, they must be
corrected by an empirical fit factor. Thus, an easy and sta-
ble formula for the evaluation of quantum and continuum
tunneling in CMOS devices is achieved [27].

5. Summary and Conclusion

We presented a hierarchy of tunneling models for semi-
conductor device simulation. Higher-order transport mod-
els are found suitable for the description of hot-carrier
tunneling. Common methods to estimate the transmis-
sion coefficient of energy barriers have been reviewed
and the results were compared to measruements and com-
monly used compact models. We propose to link an in-
elastic trap-assisted tunneling model to the occurrence of
dielectric wearout and breakdown phenomena in high-
κ dielectric materials. Finally, the emergence of quasi-
bound states in inverted MOSFETs was discussed. This
requires a modification of the Tsu-Esaki formula, and we
recommend a method where the life times are calculated
based on the eigenvalues of the closed-boundary triangu-
lar well approximation. Although these models represent
the state-of-the-art at the device simulation level, open
questions remain. These comprise the use of a constant
effective mass in the dielectric layer, which contradicts
ab-initio studies, the controversial issue of image force
correction, and the modeling of high-κ insulator reliabil-
ity, which is still in its beginnings.
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